ON TE EXISTENCE OF PERIODIC SOLUTION FOR CERTAIN NONLINEAR THIRD ORDER DIFFERENTIAL EQUATIONS

B. Mehri, and Y. Tabesh

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Islamic Republic of Iran

We consider nonlinear third order differential equations.

$$x'' + f(t, x, x', x'') = 0$$
 (1)

where f(t, x, x', x') is a continuous real-valued function with domain $[0,T] \times R^3$, T > 0. Further, we shall assume that all solutions of initial value problems for (1) extend to [0,T]. Using the above assumption, we shall establish the following theorem.

Theorem 1. Let there exist constants k > 0 and C > 0 such that

$$2M \le Ck^3 \tag{2}$$

where

 $M = \{ \max | k^2 x' - f(t, x, x', x'') | : t \in [0, \omega],$

 $|x| \le C, |x'| \le Ck, |x''| \le Ck^2$

Then there exists ω_0 , $0 < \omega_0 < \frac{\pi}{2k}$ such that for every

 ω , $0 < \omega \le \omega_0$ equation (1) has a solution x(t) satisfying the boundry conditions

$$x^{(i)}(0) + x^{(i)}(\omega) = 0,$$
 $i = 0,1,2$ (3)

Proof. Let $\omega \in (0, \frac{x}{2k}]$ and let G(t, s) be the Green's function

$$G(t,s) = \begin{cases} \frac{1}{2k^2} \left[1 - \frac{Cosk(\frac{\omega}{2} - s + t)}{Cosk(\frac{\omega}{2})}\right]; 0 \le t \le s \le \omega \\ \frac{1}{2k^2} \left[-1 + \frac{Cosk(\frac{\omega}{2} + s - t)}{Cosk(\frac{\omega}{2})}\right]; 0 \le s \le t \le \omega \end{cases}$$

Keywords: ODE; Periodic solution

Then equation (1) with boundary conditions (3) is equivalent to the integral equation

$$x(t) = \int_0^{\infty} G(t, s) \{ k^2 x'(s) - f(s, x(s), x'(s), x''(s)) \} ds$$
 (4)
(See [1])

Let

 $B = [x(t) \in C^{2}[0,\omega]: |x(t)| \le C, |x'(t)| \le Ck, |x''(t)| \le Ck^{2}]$ and define the operator U on B by

$$(Ux)(t) = \int_0^{\omega} G(t,s) \{ k^2 x'(s) - f(s,x(s),x'(s),x''(s)) \} ds.$$

Then

$$\left| (Ux)(t) \right| \le \frac{1}{2k^2} \left[\omega + \frac{2\sqrt{2}}{k} \right] M,$$

$$\left| (Ux)'(t) \right| \le \frac{1}{2k} \left[\omega + \frac{2\sqrt{2}}{k} \right] M,$$

and

$$|(Ux)^{\bullet}(t)| \leq \frac{1}{2} [\omega + \frac{2\sqrt{2}}{k}] M$$

Hence U maps B continuously into itself provided that

$$\frac{1}{2k^2} \left[\omega + \frac{2\sqrt{2}}{k} \right] M \le C \tag{6}$$

$$\frac{1}{2k} \left[\omega + \frac{2\sqrt{2}}{k} \right] M \le kC \tag{7}$$

$$\frac{1}{2} \left[\omega + \frac{2\sqrt{2}}{k}\right] M \le k^2 C \tag{8}$$

Clearly (6), (7) and (8) are equivalent to

$$\omega \le 2 \frac{k^3 C - \sqrt{2} M}{k M} \tag{9}$$

^{&#}x27;AMS subject classification: 34A, 34C

by (2) the right-hand side of (9) is non-negative. Therefore, if $\omega > 0$ is chosen so that

$$\omega \le \min \left\{ \frac{\pi}{2k}, 2\frac{k^3 C - \sqrt{2}M}{kM} \right\}$$

 $\omega \leq \min \{ \frac{\pi}{2k}, 2\frac{k^3C - \sqrt{2}M}{kM} \}$ it follows from Schauder's theorem that (5) has a solution x(t) such that

$$|x(t)| \le C, |x'(t)| \le Ck, |x'(t)| \le Ck^2,$$

Hence (1) has a solution x(t) satisfying boundary conditions (3).

Corollary 1. If, in addition to all hypotheses of theorem 1, we further assume

i) f(t,x,x',x'') is 2α -periodic in t that is

$$f(t+2\omega, x, x', x^*) = f(t, x, x', x^*)$$

ii)
$$f(t+\omega,-x,-x',-x'') = -f(t,x,x',x'')$$

iii) f(t,x,x',x'') is locally Lipschitzian with respect to (x, x', x''). Then (1) has a 2α -periodic solution x(t)with the property that

$$\int_0^{2\omega} x(t) \, dt = O$$

Proof. Let us define z(t) as follows

$$z(t) = \begin{cases} x(t) & ; 0 \le t \le \omega \\ -x(t+\omega) & ; -\omega \le t \le 0 \end{cases}$$

It is obvious from boundary conditions (3) that z(t) is continuous with its first and second derivatives and from condition (ii) z(t) satisfies equation (1) with periodic boundary conditions

 $z(-\omega)=z(\omega), z'(-\omega)=z'(\omega), z''(-\omega)=z''(\omega).$

We now extend z(t) periodically with period 2ω to obtain a periodic solution of (1) (see [1]). Obviously

$$\int_{0}^{2\omega} x(t) dt = \int_{0}^{\omega} x(t) dt + \int_{0}^{2\omega} x(t) dt = \int_{0}^{\omega} x(t) dt + \int_{0}^{\omega} x(t+\omega) dt$$

$$= \int_{0}^{\omega} x(t) dt - \int_{0}^{\omega} x(t) dt = 0$$

Let us now consider a few applications of theorem 1. (A1) Consider the third-order differential equation which is given by Reissig [2], in its general form

$$x''' + \phi(x')x'' + k^2x' + f(x) = \mu p(t)$$
 (10)

Theorem 2. Equation (1) admits 2α -periodic solution if we further assume

$$0 \le \phi(x) \le b < \frac{k}{2}$$
, for all x (11)

$$\frac{|f(x)|}{|x|} \to 0 \quad (|x| \to \infty) \tag{12}$$

$$x.f(x) \ge 0 \tag{13}$$

$$p(t+\omega) = -p(t) \tag{14}$$

Proof. We note that condition (12) implies that for any ε > 0, there exists a number L (ε) such that

$$|f(x)| < \varepsilon C$$
 if $C > L(\varepsilon)$ and $|x| \le C$ (15) indeed, if $r(\varepsilon)$ is such that $|f(x)| < \varepsilon |x|$, for $|x| \le r(\varepsilon)$, if $M_1 = \max \{|f(x)|, |x| \le r(\varepsilon)\}$,

and

$$L(\varepsilon) = \max \left\{ r(\varepsilon), \frac{M_1}{\varepsilon} \right\}.$$

 $L(\varepsilon) = \max \left\{ r(\varepsilon), \frac{M_1}{\varepsilon} \right\}.$ Then L(\varepsilon) satisfies (15). On the other hand

$$M = \max \left\{ \left| k^2 x' - f \right| : t \in (0, \omega), \, |x| \le C, \, |x'| \le Ck, \, |x''| \le Ck^2 \right\}$$

$$\leq \varepsilon C + Ck^2b + |\mu|P$$

where $P = max |p(t)|, t \in [0, \omega]$. We need to show that (2) is satisfied for some small value of |M|, i. e.

$$\varepsilon C + C k^2 b + |\mu| P \leq \frac{1}{2} C k^2$$

or

$$\varepsilon C + |\mu| P \le C k^2 (\frac{1}{2} k - b),$$

by (11). The right-hand side of the above inequality is positive, and if we take $\varepsilon = |\mu|$ and $|\mu|$ small enough (2) is satisfied and hence (10) possesses a 2α -periodic solution

x(t) for which $|x(t)| \le C$, $|x'(t)| \le Ck^2$.

(A2) We consider the equation

$$x''' + \psi(x') x''^{(2n+1)} + a^2 x' + x^{2n+1} = \mu p(t)$$
 n>1 (16)

Theorem 3. Equation (16) admits 2a-periodic solutions if the following conditions are satisfied

$$0 \le \psi(x') \le b \quad \text{for all } x' \tag{17}$$

$$p(t,\omega) = -p(t) \tag{18}$$

Proof. Let $\frac{k}{\sqrt{2}} < a \le k$, $\omega \in (0, \frac{\pi}{k}]$, and note that

$$M = \max \left\{ \left| k^2 x' - f(t, x, x', x'') \right| : t \in (0, \omega], |x| \le C, |x''| \le C k^2 \right\}$$

$$\le (k^2 - a^2) k C + b C^{2n+1} + C^{2n+1} + |\mu| P$$
where

 $P = max | p(t) |, t \in [0, \omega]$

We only need to show that (2) is satisfied for some C. That

$$(k^2 - a^2) k C + bC^{2n+1} + k^{2(2n+1)} + C^{2n+1} + |\mu| p \le \frac{1}{2} k^3 C$$

$$bC^{2n} + k^{2(2n+1)} + C^{2n} + \frac{|\mu|}{C}p \le k \left(a^2 - \frac{k^2}{2}\right)$$

let $C = |\mu|^{\frac{1}{n}}$ then

$$b k^{2(2n+1)} |\mu|^2 + |\mu|^2 + |\mu|^{1-\frac{1}{n}} p = |\mu|^{1-\frac{1}{n}} \{ P + |\mu|^{1+\frac{1}{n}} [1 + b k^{2(2n+1)}] \}$$

$$\leq k (a^2 - \frac{k^2}{2})$$

It is obvious that for sufficiently small $|\mu|$, we can make the above inequality to be true.

Hence by corollary 1, (16) has a 2ω -periodic solution x(t) that

$$|x(t)| \le |\mu|^{\frac{1}{n}}, |x'(t)| \le |\mu|^{\frac{1}{n}}k, |x''(t)| \le |\mu|^{\frac{1}{n}}k^{2}$$
(A₃) Consider the equation
$$x'' + x' + x^{3} = \frac{1}{8} \sin 4t$$
 (20)

In this example we take k=1, $\omega = \frac{\pi}{4}$ and

$$M = \left\{ |x' - f(t, x, x', x')| : t \in (0, \omega), |x| \le C, |x'| \le Ck, |x'| \le Ck^2 \right\}$$
$$\le C^3 + \frac{1}{8}.$$

Hence for the condition (2) to be satisfied we must have

$$C^3 + \frac{1}{8} \leq \frac{1}{2}C.$$

Obviously it is true if we take $C = \frac{1}{2}$. Therefore, by

corollary 1, equation (21) has a $\frac{\pi}{2}$ periodic solution for which

$$|x| \le C$$
, $|x'| \le Ck$, $|x'| \le Ck^2$.

References

- 1. Cesari, L. Asymptotic Behavior and Stability Problems. 2nd Ed., Academic Press, New York, (1963).
- Reissig, R. Periodic Solutions of a Third Order Nonlinear Differential Equations. Ann. Math. 13, 139-148; (1971).
- 3. Mehri, B. and Hamedani, G.G. On the Existence of Periodic Solutions of Nonlinear Second Order Differential Equations SIAM J. Appl. Math. 29; 72-76, (1975).