J.Sci. . R. Iran

Vol.3 No.34
Summer & Autumn 1992

ON TE EXISTENCE OF PERIODIC SOLUTION
FOR CERTAIN NONLINEAR THIRD ORDER
DIFFERENTIAL EQUATIONS
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We consider nonlinear third order differential equations.

x+fGx,x,2)=0 ¢))
where f(t,x, X, x*)is a continuous real-valued function
with domain [ 0,T ] xR >, T > 0. Further, we shall
assume that all solutions of initial value problems for
(1) extend to [ 0,T ]. Using the above assumption, we
shall establish the following theorem.

Theorem 1. Let there exist constants k> 0 and C > 0
such that

M < Ck* @

where
M= {max 1k2x'-f(t,x,x",x"):t€ [0, @],
I <C ki< ci?
Then there exists wo,0 < o <i such that for every
0,0<w< an equation (1) has a solution x () satisfying
the boundry conditions

190 +x% (=0, i=0,12 3)
Proof. Let we (O,-Z’i] and let G (¢, s ) be the Green's

function
Cosk(&-5+1)
L2 _jo<r<s<o
I 22 Cosk &L
G(s)= 2
Cosk(L+s-1)
| 42 J0<s<i<o
2 k2 Cosk%
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Then equation (1) with boundary conditions (3) is
equivalent to the integral equation

x (t)=J G(s) (K%'O-f6x@x' 6 X D) ds  (4)

(See [1])
Let
B=[x()e C*0.0):|x(®|<C|x' O]l x* 0|<Ck?
and define the operator U on B by
(UX)(t)=[ G (6.5) { K" (9) -f(5,x (), X (), X' (5))) ds.
&)
Then
lWx) (1) s 1[0+ 22 M,
2%* k
lwxy (o< Lo+ 22 m,
2k k
and

|(Ux)'(t)|s21_{w+2¥CZ]M

Hence U maps B continuously into itself provided that

1 e223m<c ®)

2k k

1 (0+2¥23pm <kcC )

2k k

% [w+;k@.]M <k’C ®)

Clearly (6), (7) and (8) are equivalent to

ws2k—LSC' M 9

kM
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by (2) the right-hand side of (9) is non-negative. There-
fore, if w>0 is chosen so that

it follows from Schauder's theorem that (5) hasa solutlon
x(¢) such that

Ix(nl<ClO|Chr (n]sCk,
Hence (1) has a solution x (¢) satisfying boundary condi-
tions (3).

Corollary 1. If, in addition to all
of theorem 1, we further assume

i) f@t,x,x",x") is 2a-periodic in ¢ that is

ft2m,x,x" x")y=ft,x,x",x")

i) fe+wx-x',x")=Sftx,x",x")

iii) (¢, x,x',x") is locally Lipschitzian with respect to

(.x',x"). Then (1) has a 2a-periodic solutionx(¢)
with the property that

hypotheses

3 .
L x(0)dt=0

Proof. Let us define z (1) as follows

20=1 x(0 0w
x(@+a) ;-wsi<0

It is obvious from boundary conditions (3) that z(¢) is
continuous with its first and second derivatives and
from condition (ii) z( ¢) satisfies equation (1) with
periodic boundary conditions
z(-®)= (W), Z'(-w)= Z(0), "(-)= 2" (V).
We now extend z(t) periodically with period 2 to
obtain a periodic solution of (1) (see [1]). Obviously

2a) 7] 20 [} w
I x(t)dt=f x(t)dt+[ x(t)dt=] x(t)dt+[ x(@+ahdi
0 0 0 0

0
=I x(t)dt-] x(Ddt =
1] 0

Let us now consider a few applications of theorem 1.
(A1) Consider the third-order differential equation which
is given by Reissig [2], in its general form

X+ @)X+ X+ ) =pp (O) (10)

Theorem 2. Equation (1) admits 2« -periodic solution if
we further assume

0S¢(x)$b<§, forall x (11)
lf_ﬁc')l_)o (M—)w) (12)
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x.f(0)=0
p t+a)=-p@®

(13)
(14)

Proof. We note that condition (12) implies that for any €
> (), there exists a number L (€) such that

f@l<eC ¥ C>L(©® and <C (15)
indeed, if r(¢) is such that[f(0| < epd  for p|<r (@, 4
M =max {[f@), [<r @),
and
L (&) =max {r(e),Ms_l}.
Then L(g) satisfies (15). On the other hand
M =max (k2% -f]:te ©,0, <C, fe]sCh rl<Ck?)
<SEC+CKb+ |l P
where P =max|p ()], ¢ € [0,0} We need to show that (2) is
satisfied for some small value of |M}, i. e.
eC+Ckb+ mps;_c#
or
eC+ |;4Pka2(;—k-b),

by (11). The right-hand side of the above inequality is
positive, and if we take e=|14 and | small enough (2) is
satisfied and hence (10) possesses a 2« -periodic solution
x (9 for which |x ()] < C,|x' @] < CK>.

(A2) We consider the equation

X"+ ) x" @ +a2x +x =up () n>1 (16)

Theorem 3. Equation (16) admits 2a-periodic solutions
if the following conditions are satisfied

0<y(@)<b forallx' (an
p(tD=-p (18)
|4 is sufficiently small 19)

Proof. Let £-<a <k, we(0,Z, and note that
' 73 k

M =max (|22 -f (1. 2,x)|: e O, W<C. rlsCi)

<(k2-a?) kC+bC* +C*™ 4|y P
where

P=max|p (},te [O,a)]
We only need to show that (2) is satisfied for some C. That

is
2_a) kC+bC™ + K7 4™ 4 ) pS;—kBC
or

bC2"+kml)+C2"+|%p <k (a2- %)

let C=|447 then
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bR R+ P+ R p = | R (P + | R [ 1+ b K22
Sk(a2-ﬁ)
2

It is obvious that for sufficiently small |4, we can make
the above inequality to be true.
Hence by corollary 1, (16) has a 2w -periodic solution

x(f) that

L] l
Lx 0] <[ x 'O <] b Jx " O] < |47 £
Consider the equation
(20)

(A3)
x"+x'+x3 =;—Sin 4

In this example we take k=1, w:f and

M={|2-f Gx2,x:te O, ]sC | j<Crr]<ci

<C*+1,
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Hence for the condition (2) to be satisfied we must have

c+lclc
g8 2
Obviously it is true if we take C=%. Therefore, by

corollary 1, equation (21) has a gperiodic solution for
which

<G hschl<cr?
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